теорема виртуальных перемещений - meaning and definition. What is теорема виртуальных перемещений
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is теорема виртуальных перемещений - definition

Принцип виртуальных перемещений; Возможных перемещений принцип; Возможные перемещения; Виртуальные перемещения

ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ ПРИНЦИП         
для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю. Возможных перемещений принцип применяется при изучении условий равновесия сложных механических систем (механизмов, машин).
ВИРТУАЛЬНЫЕ ПЕРЕМЕЩЕНИЯ         
то же, что возможные перемещения.
Виртуальные перемещения         

Wikipedia

Принцип возможных перемещений

При́нцип возмо́жных перемеще́ний — один из вариационных принципов в теоретической механике, устанавливающий общее условие равновесия механической системы. Согласно этому принципу, для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма виртуальных работ A i {\displaystyle A_{i}} только активных сил на любом возможном перемещении системы была равна нулю (если система приведена в это положение с нулевыми скоростями).

Количество линейно независимых уравнений равновесия, которые можно составить для механической системы, исходя из принципа возможных перемещений, равно количеству степеней свободы этой механической системы.

Возможными перемещениями несвободной механической системы называются воображаемые бесконечно малые перемещения, допускаемые в данный момент наложенными на систему связями (при этом время, входящее явно в уравнения нестационарных связей, считается зафиксированным). Проекции возможных перемещений на декартовы координатные оси называются вариациями декартовых координат.

Если, например, на систему наложено l {\displaystyle l} голономных реономных связей:

f α ( r , t ) = 0 , α = 1 , l ¯ {\displaystyle f_{\alpha }({\vec {r}},t)=0,\quad \alpha ={\overline {1,l}}}

То возможные перемещения Δ r {\displaystyle \Delta {\vec {r}}}  — это те, которые удовлетворяют

i = 1 N f α r Δ r + f α t Δ t = 0 , α = 1 , l ¯ {\displaystyle \sum _{i=1}^{N}{\frac {\partial f_{\alpha }}{\partial {\vec {r}}}}\cdot \Delta {\vec {r}}+{\frac {\partial f_{\alpha }}{\partial t}}\Delta t=0,\quad \alpha ={\overline {1,l}}}

А виртуальные δ r {\displaystyle \delta {\vec {r}}} :

i = 1 N f α r δ r = 0 , α = 1 , l ¯ {\displaystyle \sum _{i=1}^{N}{\frac {\partial f_{\alpha }}{\partial {\vec {r}}}}\delta {\vec {r}}=0,\quad \alpha ={\overline {1,l}}}

Виртуальные перемещения, вообще говоря, не имеют отношения к процессу движения системы — они вводятся лишь для того, чтобы выявить существующие в системе соотношения сил и получить условия равновесия. Малость же перемещений нужна для того, чтобы можно было считать реакции идеальных связей неизменными.

What is ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ ПРИНЦИП - meaning and definition